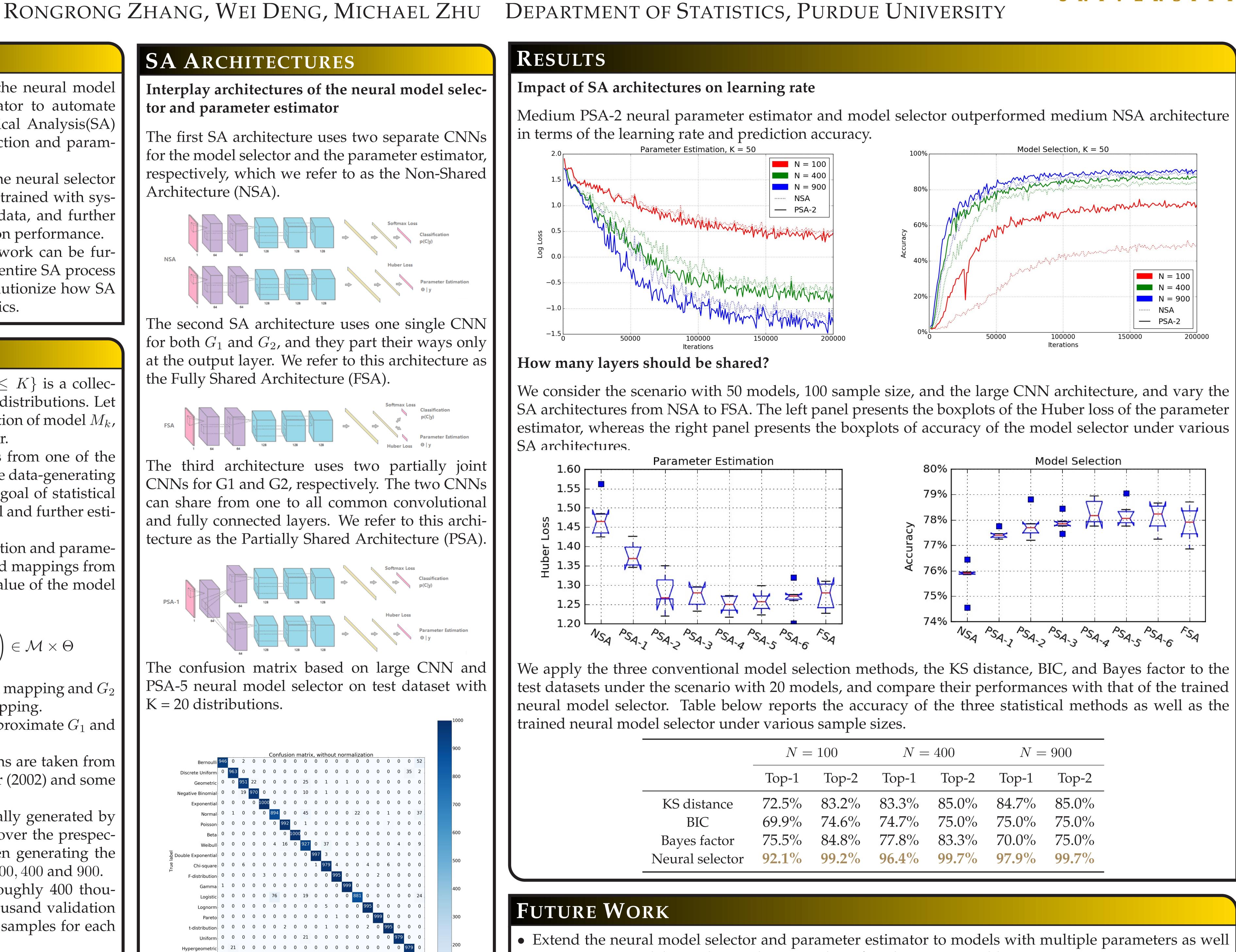
PURDUE

CONTRIBUTION

- We proposed and developed the neural model selector and parameter estimator to automate two major tasks in the Statistical Analysis(SA) process, which are model selection and parameter estimation.
- Simulation study shows that the neural selector and estimator can be properly trained with systematically simulated labeled data, and further demonstrate excellent prediction performance.
- The idea and proposed framework can be further extended to automate the entire SA process and have the potential to revolutionize how SA is performed in big data analytics.

METHOD


- Suppose $\mathcal{M} = \{M_k : 1 \leq k \leq K\}$ is a collection of K prespecified models/distributions. Let $f(y|\theta_k, M_k)$ be the density function of model M_k , where θ_k is the scalar parameter.
- A random sample of size N is from one of the models, but we do not know the data-generating model and its parameter. The goal of statistical analysis is to identify the model and further estimate the model parameter.
- The procedures for model selection and parameter estimation can be considered mappings from the sample to a model and a value of the model parameter

$$G: \{y_j\} \to \left(\begin{array}{c} G_1(\{y_j\})\\ G_2(\{y_j\}) \end{array}\right) \in \mathcal{M} \times \Theta$$

where G_1 is the model selection mapping and G_2 is the parameter estimation mapping.

- We propose to use CNNs to approximate G_1 and G_2 .
- K = 50 probability distributions are taken from the textbook Casella and Berger (2002) and some R packages.
- Training data were systematically generated by placing an equally space grid over the prespecified parameter space, and then generating the multiple samples of size N = 100, 400 and 900.
- In total, we have generated roughly 400 thousand training samples, 100 thousand validation samples, and 50 thousand test samples for each sample size.
- The Huber loss is employed in training of neural estimator to improve the robustness against outliers generated from models with long tails.

USING DEEP NEURAL NETWORKS TO AUTOMATE LARGE SCALE STATISTICAL ANALYSIS FOR BIG DATA APPLICATIONS PURDUE

	N = 100		N = 400		N = 900	
	Top-1	Top-2	Top-1	Top-2	Top-1	Top-2
KS distance	72.5%	83.2%	83.3%	85.0%	84.7%	85.0%
BIC	69.9%	74.6%	74.7%	75.0%	75.0%	75.0%
Bayes factor	75.5%	84.8%	77.8%	83.3%	70.0%	75.0%
Neural selector	92.1%	99.2%	96.4%	99.7%	97.9%	99.7%

as regression models involving a large number of explanatory variables; • Investigate how CNNs or other DNNs can be used to automate other tasks such as hypotheses testing and diagnostics of the SA process.

Contact Information: zhan1602@purdue.edu

